THC Could Inhibit Organ Rejection in Transplant Patients

“We are excited to demonstrate for the first time that cannabinoid receptors play an important role in the prolongation of rejection of a foreign graft by suppressing immune response in the recipient,” noted Mitzi Nagarkatti, Ph.D., from the University of South Carolina School of Medicine. “This opens up a new area of research that would lead to better approaches to prevent transplant rejection as well as to treat other inflammatory diseases.”


Immune cells have been shown to express cannabinoid receptors and to produce endogenous ligands. Moreover, activation of cannabinoid receptors on immune cells has been shown to trigger potent immunosuppression. Despite such studies, the role of cannabinoids in transplantation, specifically to prevent allograft rejection, has not, to our knowledge, been investigated previously. In the current study, we tested the effect of THC on the suppression of HvGD as well as rejection of skin allografts. To this end, we studied HvGD by injecting H-2k splenocytes into H-2b mice and analyzing the immune response in the draining ingLNs. THC treatment significantly reduced T cell proliferation and activation in draining LNs of the recipient mice and decreased early stage rejection-indicator cytokines, including IL-2 and IFN-γ. THC treatment also increased the allogeneic skin graft survival. THC treatment in HvGD mice led to induction of MDSCs. Using MDSC depletion studies as well as adoptive transfer experiments, we found that THC-induced MDSCs were necessary for attenuation of HvGD. Additionally, using pharmacological inhibitors of CB1 and CB2 receptors and CB1 and CB2 knockout mice, we found that THC was working preferentially through CB1. Together, our research shows, for the first time to our knowledge, that targeting cannabinoid receptors may provide a novel treatment modality to attenuate HvGD and prevent allograft rejection.

Clinical Trials, Studies and Publications:

Δ9-Tetrahydrocannabinol attenuates allogeneic host-versus-graft response and delays skin graft rejection through activation of cannabinoid receptor 1 and induction of myeloid-derived suppressor cells